Douglas Krantz - Technical Writer - Describing How It Works

Which Way Does Electricity Flow?

Which way electricity flows depends what is being looked at. Electrons actually move through a wire from the negative terminal of a battery to the positive terminal; electrons are negatively charged. Positive charges appear to move the other direction, but actually stay put with their non-moving atoms.

Which direction does electrical flow go in a wire? The directions the electrons travel or the direction that positive charges seem to travel?
Electrons go one direction while the positive charges appear to go the other. Which is correct?


By Douglas Krantz

As an electrons moves to the left, the atom it leaves becomes positively charged and the atom it goes to becomes neutral. The positive charge appears to be moving, but really just comes and goes on each atom; it's the negative charge on the electron that is moving. The negatively charged electrons are drawn to the positive termminal of the battery, but don't move more than one atom at a time. While it is perceived that the positive charge on the atoms of the conductor is moving to the right, it's not moving. Rather, the electron leaving a neutral atom takes its neutralizing negative charge with it and leaves the atom, waiting for an electron to balance out the charges again, positively charged.
The negatively charged electrons are drawn toward the positively charged battery terminal, or the next positively charged atom. The electrons move.

As an electron leaves the atom and is replaced with another electron, each atom changes from a neutral charge to a positive charge and back again. The atoms of a wire themselves, however, do not move.

Because the protons in the nucleus of the atom don't move, the protons don't affect the actual movement of electrical charges or the magnetic fields; because the electrons move, the electrons affect the electrical charges on the atoms, and magnetic fields.



So... In a wire, negatively charged electrons move, and positively charged atoms don't.

Many electrical engineers say that, in an electrical circuit, electricity flows one direction: out of the positive terminal of a battery and back into the negative terminal. Many electronic technicians say that electricity flows the other direction: out of the negative terminal of a battery and back into the positive terminal.

These two theories seem to be in conflict. Where'd this confusion over the direction of electrical flow come from?

The Discovery of Electrical Flow

Benjamin Franklin started the confusion. He rubbed wool and wax together and noticed what we call static electricity.

At that time, nobody knew about electrons or charges, but trying to explain the observed phenomena, he concluded that something moved from either the wax to the wool, or from the wool to the wax. It looked to him like something moved from the wax to the wool.

He published the discovery.

The Establishment of the Direction of Flow

Around the world scientists and engineers alike added their own ideas to this theory, held discussions on this theory, published their findings using this theory, and formally established that, for electrical current, this was the direction of flow.

In the scientific and engineering world, and in all the literature and books, everyone "knew" that in a circuit, electricity flowed from the positive battery terminal to the negative terminal. This was a well-established concept and any change to that concept would cause mass pandemonium.

But the confusion over electrical flow direction started anyway.

Cathode Rays

In 1869, using high voltage, German Physicist Johann Hittorf noticed a phenomenon of waves or rays emanating from the cathode in a vacuum tube. Later these rays or waves became known as cathode rays.

Edison Effect

The idea was to see if the blackening of the interior of the lamp could be prevented with an extra electode inside the incandescent lamp. That part of the experiment never worked.
With the battery connected this way, when the filament was hot, negatively charged electrons boiling off the filament would migrate to the positively charged plate. If the battery was reversed so the filiment was positive and the plate was negative, no electrons would travel from the plate to the filiment because a cool plate does not emit electrons.


Some years later, on hearing about the cathode rays, and while trying to understand and prevent some blackening on the inside of incandescent lamps, Thomas Edison had one of his assistants place an extra electrode inside a lamp.

It was discovered that if a battery, with its positive side connected to the added electrode (plate), and its negative side connected to the filament (cathode), an electrical current would flow. If the battery was connected the other way around, it was also observed that no current would flow.

This current, flowing from the hot filament, through the vacuum, to the electrode, was invisible. No practical purpose could be found for the discovery, but Edison patented this "Edison Effect" anyway.

The Electron

Years later, J.J. Thomson investigated the cathode rays and he figured out about the electron in the atom. He also concluded that the current flow known as the "Edison Effect" was made by electrons traveling through the vacuum.

The Conflict in the Direction of Electrical Flow

We had a conflict. The theories and books all said that in a circuit, electrical current flows out of the positive terminal of a battery, and returns into the negative terminal. However, the new discoveries concluded that, contrary to conventional wisdom, electrons flowed the other direction.

Conventional Current

Attempting to change the books, theories, and especially the minds of all the engineers and scientists around the world would be the cause of mass arguments. It was also assumed that the actual direction didn't really make a real difference, at least as long as everyone stuck to one direction of electrical flow, or the other.

Of course, conventional current flow does not work well with vacuum tubes or with the sub-atomic level understanding of magnetism, but it was decided that these problems were less of an issue than trying to change everybody's minds, and correct all the books.

Rather than having engineers and scientists fighting with each other over the direction of current flow, the decision was made that everyone would stay with what has become known as "Conventional Current".

Back to the Present

Nowadays, in general, most electronic technicians use electron flow as the direction of electrical current in a wire, and most engineers use the conventional direction of electrical current in a wire.

Whereas the electronic technician's idea is correct about the movement of electrons, with the exception of electrons traveling through vacuum and the sub-atomic effects of magnetism, there's really no harm in the engineers' concept of using the conventional electrical current as electrical flow.

As a matter of fact, for a few scientific purposes, the direction of conventional current helps in understanding. Lightning, for example, starts at the positively charged ground that draws electrons from the air molecules close by. As the positive charge travels up, the electrons from further up are drawn down until the whole column of air is ionized, conducting electrons from the negatively charged clouds to the ground.

Liquid or gaseous substances like air, water, even human flesh, have positive ions (atoms without enough electrons to make them neutral) that physically move. These carry their positive charge with them as they travel through the substance. (This flow is really ion migration, but is considered by some to be electrical flow.)

Acid in batteries and electrolytes in electrolytic capacitors are examples of this. Some people consider this to be the correct direction of electrical flow.

However, in electrical design and maintenance, batteries and capacitors are the exceptions and not the rule. They are only components shown on schematics and wiring diagrams.

There is a lot more to the drawings than just these exceptions. For the understanding of electrical current flow in solid materials like copper (lines on the schematics), and components like semiconductors, most capacitors, resistors, inductors and transformers, etc., the atoms stay in place while the electrons move.

Does It Really Make a Difference?

As an electrons moves to the left, the atom it leaves becomes positively charged and the atom it goes to becomes neutral. The positive charge appears to be moving, but really just comes and goes on each atom; it's the negative charge on the electron that is moving. The negatively charged electrons are drawn to the positive termminal of the battery, but don't move more than one atom at a time. While it is perceived that the positive charge on the atoms of the conductor is moving to the right, it's not moving. Rather, the electron leaving a neutral atom takes its neutralizing negative charge with it and leaves the atom, waiting for an electron to balance out the charges again, positively charged.
The negatively charged electrons are drawn to the positive terminal of the battery, but don't move more than one atom at a time. While it is perceived that the positive charge on the atoms of the conductor moves to the right, the charge is not moving.

The perceived movement of the positive charge is more like the "Stadium Wave" seen at a football stadium. What looks like an ocean wave is just people standing and sitting. The people aren't moving, they're just standing up and then sitting down again. However, because they are in a synchronous movement, the "Stadium Wave" is perceived to move.

In a wire, the electron leaving a neutral atom takes its neutralizing negative charge along with it, and leaves the atom positive. The atom just sits there and waits for another electron to balance out the charges again. The question is, "Does that mean nothing is moving to the right, or does that mean that something is moving to the right?"

The answer to that is probably "It Depends".


Getting back to the diagram though, one has to really understand what is being looked at. Is it the negatively charged electron movement to the left, or is it the passing of positive electrical charge to the right, that is the direction of electrical flow?

The answer to this is more about what else is being considered. There are two components to electromagnetic force, for example.

Electrical Force -- Because the individual electrons are moving to the left so slowly and the positive charges are being passed on to the right so fast, the electrical flow would be considered to be electrical charges being passed to the right.

Magnetic Force -- Then again, because the positive charges aren't physically moving, and magnetism is tied in with electron or proton movement (in a wire, it's the electron movement that is creating the magnetism), the electrical flow would be considered to be electrons moving to the left.

Wire Itself

Standing back and looking at a wire, though, there are three speeds of travel.

Protons -- The positive charges in an atom (positive ions using the "Stadium Wave") do not move at all. The protons are moving at 0.0 meters per second.

Electrons -- The individual electrons are moving slowly. An individual electron can take seconds to hours to go from one end of a wire to the other. The electrons are moving at a rate from 1.0 meters per second (or faster) to 0.001 meters per second (or slower).

Power -- Regardless of which way electrons are moving, or which way the positive ions appear to move, power is traveling either direction on a wire at somewhere around 2/3 the speed of light. Power transfer on a wire, in either direction, is around 200,000,000 meters per second.

Movement of Power

In a wire, the positive ions just look like they're moving in one direction, the electrons are slowly moving in the other direction, and power zips very fast in either direction.

Quantity -- In order to use Ohms Law (E = I x R) or Watts Law (P = I x E), the intensity electrical current (I) has to be quantified. The agreed on quantity is tied to the number of electrical charges going past a specific point in a wire. (Positive charges for the engineers concerned with designing electrical circuits, negative charges for the technicians trying to deal with the effects of current in a circuit.)

In reality, the "Statium Wave" movement of positive charges doesn't quite describe electrical flow because, in an electronic circuit, the protons don't move along a wire. Electron movement doesn't quite describe electrical flow because, in the long run, the electrons move so slow. As it moves from one atom to another, each electron jumps quickly, but overall, because the electron keeps stopping on individual atoms, an individual electron is going slowly from one end of a wire to the other.

The Stadium Wave mentioned above is actually part of "Wave Theory", where the electrical current moving in either direction from the battery terminals really isn't the important part, it's the energy being transferred from the power source to the load that's the important part. This transfer involves more than just electrical force and magnetism directly, it also involves capacitance, inductance, propagation, impedance, reactance, frequency, and power.

In electrical theory and electronic theory, this power transfer is usually done using transmission lines or wave guides, or even propagating at full light speed from transmitting to receiving antennas.

This gets really deep into physics, and the details are still being argued about. I'll have to get into wave theory in another article.


Which direction does electricity flow? The answer to that seems to be just an arbitrary decision, based more on what the electricity is being used for, and based less on the sub-atomic physical characteristics of atoms (the electrons or protons).

Arrows

Of course, because it's the engineers thinking in terms conventional current flow getting to make the electronic symbols we see on schematics, the arrows point in the direction of conventional current flow and not in the direction of electron flow.

The electronic technicians understand this, and live with these symbols.
Greetings Douglas,

I am still not clear what direction electricity flows from reading in your website. At the end you basically say it didn't matter.

You have also said that it is the ("power"?) that zips through from the source to the load. I assume by power you don't mean energy.

Thank you, RZ

Electron Flow

Most technicians think that electricity flows in a wire the direction that electrons flow. This is the direction in a wire that actually shows physical movement. A major advantage to this thinking is that in a wire, magnetism is affected by the movement of electrons. (Magnetism is a major effect of electromagnetism). A major disadvantage to this thinking is that electrons can take minutes to hours to move from one end of a wire to another end, and everyone "knows" that electricity travels close to the speed of light.

Positive Charge Flow (Conventional Current)

Most engineers think that electricity flows in a wire the direction that positive charges travel. (One of the electrons is missing from an atom makes the atom positively charged). The advantage to this thinking is that, even though the positive charges aren't actually moving, when looking at a wire end-to-end, the effect seems to show the positive charge is moving at close to the speed of light.

Movement on a Pair of Wires

It takes two wires, however, to make an electrical circuit: one wire carries the current one way away from the power supply to the load, and one wire carries the current the other way from the load to the power supply.
  • One way of thinking about it is that the electrons, that leave the power supply on one wire, have to be returned to the power supply on the other wire, or the power supply runs out of electrons.

  • One way of thinking about it is that the positive charges, that leave the power supply on one wire, have to be returned to the power supply on the other wire, or the power supply becomes electrically unbalanced.

Both ways of thinking about electrical movement work; only one way or the other can be used at time. Trying to use both ways at a time becomes confusing when trying to explain to someone else how electricity works.

Power Movement

Power, which is the transfer of energy, moves along a pair of wires (for a complete circuit) at nearly the speed of light. The problem with power movement is that it can't be explained as just electron movement or positive charge movement. Power movement is the combination of both electron movement (negative charge movement) and positive charge movement. If you want to understand power movement, then you have to understand both negative charge (the electron) and positive charge movement.

Electricity - No Agreement

In order for me to say electricity flows one direction or the other, everyone world-wide has to agree on the definition of electricity. It's been over a hundred years since the electron was discovered, and still, there is no real agreement on what should be thought of as electricity.

For me, I choose to refer to electrons flowing in the circuit. The physical electrons as they move around a circuit seem more real than the perceived positive charge movement. Rather than saying "electricity is flowing", I try to say "electrons are flowing". Specifying "electrons", to me, seems to work better than the ambiguous word "electricity".

If you can get all the engineers and technicians, and all the educators and textbooks to agree on what is electricity, then I can tell you which way it flows. But until there is an agreement among everyone about what electricity is, whether it's moving electrons or moving positive charges, the best I can tell you is that either direction can be used, just stick with the direction you choose... and don't put down anyone for choosing the other direction.

Douglas Krantz



References:

http://www.mi.mun.ca/users/cchaulk/eltk1100/ivse/ivse.htm - Conventional Current and Electron Flow

http://www.allaboutcircuits.com/vol_1/chpt_1/7.html - Conventional versus electron flow

http://www.ieeeghn.org/wiki/index.php/Diode - Diode

http://history-computer.com/ModernComputer/Basis/diode.html - The Vacuum Tube of John Ambrose Fleming

http://en.wikipedia.org/wiki/Cathode_ray - Cathode Ray

http://www.newworldencyclopedia.org/entry/Diode - Diode

http://amasci.com/amateur/elecdir.html WHICH WAY DOES THE "ELECTRICITY" REALLY FLOW?





Index
Residential
Life Safety
Descriptions
Electronics
Maintenance
Suppression
This website uses cookies. See Privacy for details.
Fire Alarm Q&A Articles



No Charge - Unsubscribe Anytime


Make It Work Series of Books by Douglas Krantz
Free - Click and Download
Make It Work Series of Books by Douglas Krantz
Make It Work Series of Books by Douglas Krantz