Douglas Krantz - Technical Writer - Describing How It Works
Get the book Make It Work - Conventional Fire Alarms

Why Should Fire Alarm Wires be Kept Out of Power Conduits?

I have a question about something


Actually, I have a Comment

You are right about keeping power and control wires separated. Had a fire alarm system many years ago that had 24 volt smoke detector wires and 208 volt fan shut down wires in the same conduit: 250' run in the dirt under the bottom slab of a building.

Fire alarm inspection is the next day and about midday ground fault shows up in the FACP. Scratched heads for a while and then started disconnecting fan shutdown wiring. Each wire removed made the ground fault indicator light get dimmer. Last wire off and light goes out (at around midnight).

Next day had induction relays installed in each fan starter. They output a nominal 24 volt signal off a bias coil with the main coil 120 or 220 volt, which when shorted picks the relay.

I had enough (just) relays on the shelf at home for another project. Brought them in in early AM and just got them in in time for the test and all was good.

Oh, and don't use THHN wire in a wet location (that was part of the problem). It ships water over time: percolates through the insulation. Use cross linked polyethylene.

Signed, Dan Fast

You're describing one situation I worked on, although that was with an intermittent ground fault problem that had been in the fire alarm system for 10 years. We were taking over the system from another company, and I was sent to add devices to an addressable panel in a school.

The original fire alarm system was a 110 VAC system, so many years ago when the system was first installed, putting some wires in the same conduit as other power equipment wires was no problem.

The new addressable system reused the old wiring, so the Signaling Line Circuit (SLC) going to the waterflow and tampers for the sprinkling system used THHN wire in the same conduit as air handling unit 8 gauge wires, and also went through the main switchgear for the building. 8 gauge wire means lots of current, lots of current means lots of magnetism created by the current, lots of magnetism means lots of power transferred through transformer action from the 8 gauge wire to the fire alarm wire.

Most of the time, the ground fault light on the panel was not lit, but once in a while it showed a ground fault. That's when the air handling equipmet turned on. The installing fire alarm company never found the ground fault because the ground fault was an induced type of ground fault, not a shorted to ground type of fault.

An ohmmeter didn't detect a ground fault on the SLC. An insulation tester (a 36 volt ohmmeter) couldn't detect a ground fault. However, the AC voltmeter showed .6 volts of AC coming into the panel on the SLC. When I disconnected the SLC from the panel, the SLC showed 12 VAC to ground. That was inductive coupling of the current from the 8 gauge wires into the SLC in the same conduit.

The fix was installing new SLC wiring in 10 feet of flex conduit to get around the 40 feet where the SLC shared crosstalk with the 8 gauge wires.

Easy fix for a 10 year old problem, and the school district facilities superintendent considers me a hero.

Douglas Krantz

Thanks for the soft ground fault article. I liked the Nuts & Volts article on the home made low voltage megger (all right, insulation tester: it is more accurate).

Regards, Dan Fast

Having serviced fire alarm systems for nearly 20, Douglas Krantz has compiled his knowledge of the causes of Ground Faults and how to reliably detect them into the book Make It Work - Hunting Ground Faults. The book shows the three types of ground fault, what equipment should be used with each type of ground fault, and how to locate those hard-to-find ground faults.
Douglas Krantz -- Fire Alarm Engineering Technician, Electronic Designer, Electronic Technician, Writer

Share This With Friends:

Post this by your fire alarm panel -- It shows the in-house fire alarm system and how it calls the fire department.

Go to the Fire Alarm Description Map Page of Douglas Krantzs Technicians Corner
Go to the Residential Life Safety Map Page of Douglas Krantzs Technicians Corner
Go to the Residential Life Safety Map Page of Douglas Krantzs Technicians Corner
Go to the Fire Alarm Description Map Page of Douglas Krantzs Technicians Corner
Go to the General Electrical Map Page of Douglas Krantzs Technicians Corner
Go to the Fire Alarm Maintaining Map Page of Douglas Krantzs Technicians Corner
Go to the Fire Suppression Map Page of Douglas Krantzs Technicians Corner
Go to the Guest Writer's Guidelines of Douglas Krantzs Technicians Corner
See Trivia on Douglas Krantzs Technicians Corner
This website uses cookies. See Privacy for details.
Get the book Make It Work - Conventional Fire AlarmsGet the book Make It Work - Conventional Fire AlarmsGet the book Make It Work - Conventional Fire AlarmsGet the book Make It Work - Conventional Fire AlarmsGet the book Make It Work - Conventional Fire AlarmsGet the book Make It Work - Hunting Ground FaultsGet the book Make It Work - Hunting Ground FaultsGet the book Make It Work - Hunting Ground FaultsGet the book Make It Work - Hunting Ground FaultsGet the book Make It Work - Hunting Ground Faults
Reader's Favorite Articles

What is a Stair Pressurization Fan (SPF)?

Which Way Does Electricity Flow?

What's the Difference Between Class A and Class B?

What Makes the End of Line Resistor So Important?

What is a Flyback Diode?

What is a Fire Alarm System?

What is an RTU (Roof Top Unit)?

What Causes an Open NAC?

Learn about fire alarms, one article at a time -

Keep up on the latest article!




No Charge - Unsubscribe Anytime